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Summary

The field of computational fluid dynamics (CFD) has

advanced to the point where it can now be used for the

purpose of fluid dynamics physics education. Because of
the tremendous wealth of information available from

numerical simulation, certain fundamental concepts can

be efficiently communicated using an interactive graphi-

cal interrogation of the appropriate numerical simulation

data base. In other situations, a large amount of aerody-
namic information can be communicated to the student by

interactive use of simple CFD tools on a workstation or

even in a personal computer environment. The emphasis

in this presentation is to discuss ideas for how this process

might be implemented. Specific examples, taken from

previous publications, will be used to highlight the

presentation.

Introduction

Use of computational fluid dynamics (CFD) tools by the

aerospace field to increase understanding of fluid dynamic

and aerodynamic phenomena has been rapidly increasing

during the past decade especially the last several years.

The primary reasons for this are the rapidly increasing
simulation capabilities in the CFD field and the rapidly

expanding capabilities in computer hardware perfor-
mance. For example, computer hardware execution speed

has increased by a factor of about 15 over the past decade

and by over 200 during the past two decades. This rapid

advance in computational execution speed is displayed in

figure 1. The top curve shows how the theoretical peak

execution speed has improved with time and includes

effects from both circuit speed and architectural improve-

ments, e.g., vectorization speed ups from Cray-type

computers. The lower curve represents the improvement

in execution speed due to just circuit speed. The middle

curve represents the actual improvement in execution

speed performance from a variety of CFD application

codes as approximated from the shaded symbols.

Another reason for the dramatic increase in the use of sci-

entific computational tools is that industry has discovered

the positive influence that computational analysis can
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Figure 1. Conventional main-frame computer execution

speed improvement as a function of time, results taken
from references 1-4.

have on aircraft, spacecraft, and missile design. Improved

efficiency in aerospace vehicle performance at reduced

design cost and risk is a direct result of increased use of

computational simulations. Indeed, additional advance-
ment in this area is crucial to enable the United States to

maintain its technological advantage in the aerospace
sciences.

Just as numerical simulation has become a significant and

growing aspect of the aircraft design process, the stage is
set for a dramatic increase in the utilization of CFD in the

educational arena. In this context, it is not meant to imply

that the study of CFD will increase dramatically, but that

the use of CFD as a teaching tool for other areas or disci-

plines of fluid dynamics will increase. This utilization

should range from enhancing the understanding of nonlin-

ear engineering models, e.g., the aerodynamics of tran-

sonic wings, to obtaining a better understanding of fluid

physics, e.g., flat plate boundary layer transition. Through

the synergistic utilization of CFD coupled with an appro-

priate level of experimental validation, students will
obtain a better understanding of the physical aspects of

aerodynamics and fluid mechanics as well as how to



interprettheeffectsof numerical error associated with
CFD solutions.

The remainder of this paper will provide a review of some

of the current areas of CFD research that may be utilized
in the educational environment in the near future. These

areas are especially attractive if improvements in worksta-

tion computing continues at today's current fast rate. In

addition, areas that may be used more immediately,

i.e., even today, will be presented and discussed.

Review of CFD Applications

The first results used to establish the abilities of CFD are

a set of full potential solutions for a variety of transonic

wing configurations (taken from refs. 5-7). In these simu-

lations the nonlinear full potential equation is solved for

the inviscid transonic flow field complete with transonic

shock waves. Results from two different full potential
computer codes, TWING (ref. 5) and FLO28 (ref. 6), are

compared with experiment (ref. 7) in figure 2 for the

ONERA M6 wing at transonic flow conditions. Although

there are some discrepancies in the computed results, both

show the same trends, i.e., they both predict a double

shock structure on the upper surface including a

supersonic-to-supersonic oblique shock swept
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approximatelyparallel to the wing leading edge. Most of

the discrepancies are a direct result of a coarse grid used
in the numerical simulations, a direct result of main

memory limitations from a decade ago.

An additional full potential result computed with the
TWING code and taken from reference 8 is shown in

figure 3. In this figure the drag-rise characteristics (CD

versus M_) are compared for two transonic wing cases:

an original or baseline wing and an optimized wing. The
baseline geometry was modified using the QNMDIF

optimization code (refs. 9-10) to produce the optimized
wing by minimizing the value of cruise D/L. As can be

seen from figure 3 the drag-rise characteristics of the

optimized wing are significantly improved over the origi-

nal baseline wing. It should be pointed out that the drag

values associated with figure 3 are pressure drag values

only, i.e., they do not contain skin friction drag.

The most interesting aspect of these simulations, espe-

cially in the present context, is the amount of computer

time required for a complete simulation. The computing
times reported in reference 5 are on the order of 10-20 sec

on a single processor of a Cray Y-MP computer. An

entire aerodynamic performance curve, such as the drag

rise curve presented herein, requires on the order of only

one minute• This machine was in the supercomputer class

just a decade ago but now is about even with a high end
workstation in execution speed and does not even match a

reasonably advanced personal computer in terms of main

memory. Such simulations would be easily adapted to the
educational environment and will be discussed in more

detail in the next section of this paper.

The next example results used to establish the state of the

art in CFD applications are a set of Reynolds-averaged
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Figure 2. Pressure coefficient comparisons at four semi-

span stations on an ONERA M6 wing, M_ = 0.84,

a = 3.06 deg (ref. 5).

Figure 3. Coefficient of drag 0(100) versus Mach number

for baseline and optimized wings (ref. 8).



Navier-Stokes (RANS) simulations about a canard-wing-

fuselage configuration (refs. 11-13). The geometry con-

sists of an ogive-cylinder fuselage with a canard and wing

composed of circular-arc airfoil sections. The canard and

wing are closely coupled, have zero-twist, are mid-

mounted, and are highly swept and tapered. Precise geo-
metric details can be found in references 11-13.

Numerically computed results compared with experimen-

tal results taken from reference 14 are presented in

figures 4 and 5. Figure 4 shows a variety of force and

moment comparisons for the canard-wing-fuselage con-

figuration for both deflected canard (10 deg) and unde-

flected canard cases over a range of angles of attack. Note

the generally good agreement with experiment for these

comparisons. Figure 5 shows comparisons of component

lift and pitching moment for the deflected canard case.

Again the computed results are in good agreement with

experiment. For this set of computations there is a com-

plex canard-wing vortex interaction that exists, especially

for the higher angles of attack. Some cases have even

been computed that predict wing and canard vortex

breakdown, a phenomenon that is also present in the

experiment.

The results presented in figures 4 and 5 demonstrate the

ability of RANS methods to predict the aerodynamic
characteristics of reasonably complex configurations even

in the presence of significant viscous effects. Such com-

putations would not have been possible with the full

potential approach or even an Euler equation approach.
The computer time expense associated with these RANS

computations is considerably larger than for the full

potential computations presented previously and ranges
from about 2 to 15 hours of single processor time on a

Cray C-90 supercomputer. The variation in required exe-
cution time is due to variations in geometry, flow condi-

tions, and grid refinement level. Complete details of this

set of computations are given in references 11-13.

The next example simulation involves the numerical solu-

tion of the Reynolds-averaged Navier-Stokes (RANS)

equations for the flow field about a nearly complete
F-18 aircraft. This effort was accomplished with a series

of flow solutions about several increasingly complete

geometrical representations of the F- 18. This series started

with forebody flow solutions (refs. 15-17), proceeded

with wing-fuselage simulations (refs. 18-19), and to date
has concluded with a nearly complete F-18 aircraft that

includes the fuselage, tail, and wing with deflected lead-

ing edge flap (ref. 20). Results from the last effort utiliz-

ing the most complete geometry are presented in figures 6

and 7. This level of geometric complexity is possible in a

structured grid approach because of the zonal grid scheme
used. The flow field is broken into a series of grid zones
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Figure 4. Companson of computed and experimental
forces and moments for a canard-wing-body configuration
for both undeflected and deflected canard cases,

M,, = 0.84. (a) Lift curves, (b) drag polars, (c) moment

curves.

using an overset or chimera zonal grid approach. Each

grid zone is designed to capture the effects of one aspect

of the geometry, e.g., vertical tail, wing, or the leading-

edge flap, and is generated without regard to the other
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Figure 5. Comparison of component lift and pitching

moment curves for a canard-wing-body configuration in

which the canard is deflected at 10 deg, M = 0.84. (a) Lift

curves, (b) moment curves.

geometrical aspects of the overall configuration. During
the flow solution process, information from one grid zone

is communicated to another zone using a general interpo-

lation procedure.

The present F- 18 simulation presented in figures 6 and 7

utilized 10 chimera grid zones in conjunction with a

bilateral plane of symmetry, which resulted in a grid of

about 900,000 points. The simulation was run for 1,000
iterations in a non-time-accurate mode and an additional

4,100 iterations in a time-accurate mode. The solution

required 8 million words of memory on a Cray Y-MP

computer and 55 hours of single-processor CPU time.

Figure 6 shows the limiting streamlines that have been

computed just off the aircraft surface, and figure 7 shows

three-dimensional particle traces and limiting

Figure 7. Computed particle traces showing LEX vortex
breakdown and forward surface flow pattem, F-18 aircraft,

M_ = 0.243, cx= 30.3 deg, ReL = 11 x 106 (ref. 25).

streamlines on the leading-edge extension (LEX), wing,

and deflected leading-edge flap. Each of these figures dis-

plays only an instant in time for this time-dependent
solution.

Zonal grid approaches of several different varieties have
been used in a number of other applications to solve the

RANS equations including Buning et al. (refs. 21-22) for

ascent-mode Space Shuttle computations, Meakin and

Suhs (ref. 23) and Dougherty et al. (ref. 24) for store-

separation computations, Kids et al. (ref. 25) for biofluid

applications, Flores and Chaderjian (refs. 26-28) for a

simulation of a reasonably-complete F-16A aircraft, and
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Chawlaetal.(ref.29)andSmithetal.(ref.30)totseveral
powered-liftflowsimulations.

Anexampleofapoweredlift-flowcomputation,taken

from Smith et al. (ref. 31), is displayed in figure 8. In this

figure the viscous flow about a Harrier YAV-8B aircraft

in ground effect is displayed via a series of particle traces

emanating primarily from the front and rear nozzles of the

aircraft. The flow conditions are hover-like involving a

low forward speed of 30 knots at an altitude of 30 feet

above the ground plane. This computation involved

2.8 million grid points distributed within 18 chimera grid

zones and about 40 CPU hours on a Cray Y-MP

computer.

As can be seen from figure 8, there are many flow fea-

tures that exist in this computation including a ground

horseshoe vortex generated by the interaction of the

freestream and jet flows in ground effect. Other aspects

that can be studied by analyzing the numerical data base
include the fountain effect created by two parallel jets

impinging side-by-side on the ground plane, heating on
the aft fuselage caused by the aft hot jet fountain effect,

the dramatic loss of lift experienced by powered-lift air-

craft in ground effect (the so-called suck-down effect),

and propulsion efficiency loss due to hot gas ingestion

into the propulsion system inlets. Understanding all these

complex flow phenomena, even in a qualitative sense, is a

difficult task. Such a simulation would be very difficult to

perform in today's educational environment due to the

computational expense. But an interactive interrogation of

such a "canned" solution file would yield a wealth of

information about a state-of-the-art aerodynamics prob-

lem. More discussion on this idea will be presented in the

next section of this paper.

Figure 8. Numerically computed particle traces around a Harrier YA V-8B in ground effect at a speed of 30 knots and an

altitude of 30 feet above the ground plane, a = 8.0 deg (ref. 31).



Educational Uses of CFD

There are numerous reasons for utilizing computer simu-

lations of fluid flows in the educational process. Develop-

ing hands-on experience, the power of parametric

variation, the ability to easily optimize results, and the

ability to visualize complete unsteady flow fields, are just

a few capabilities that are either available now for the
educational environment or will be available in the near

future. The chief pacing items for further distribution of

these capabilities are hardware cost effectiveness and

suitable educationally oriented applications software

availability. The hardware cost effectiveness, which is

closely related to hardware speed, is rapidly improving as

shown in figure 1. Another aspect of rapid computer effi-

ciency improvement that is not shown in figure 1 is the

rapid advance for "workstation" class computer hardware,

i.e., desktop computers usually with a significant graphics
capability. The capabilities associated with this class of

computers has been climbing even more rapidly than that

of the mainframe machines described in figure 1; it is this

class of machines that have the capability to impact the
educational environment most significantly.

Current high-end workstations can execute applications

CFD software at 50 MFLOPS and higher. The cost-

performance ratio of these machines may exceed that of

large mainframe computers by as much as an order of

magni tude. Although workstation speed is not fast enough

to provide reasonable turn-around time for large applica-

tions, it is fast enough for many smaller applications,

e.g., inviscid wing analysis or viscous airfoil analysis, a

Such computations typically require from just a few sec-

onds to a few tens of minutes on such a high-end work-

station. Of course, the precise amount of computer time

intimately depends on the size of the grid used in the sim-
ulation and the exact formulation used. The uses of simu-

lations in the educational environment can be categorized

into three specific areas: (1) parametric analysis,

(2) design (learning by trial and error), and (3) visualiza-
tion. Each of these areas will now be discussed in more

detail.

Parametric Analysis

Computational tools can be used parametrically to

demonstrate a variety of trends that exist in the field of

fluid mechanics, e.g., the linear relationship between lift

and angle of attack for an airfoil or the dependence of a

aAIthough many high-end workstation speeds are an order of
magnitude or more slower than top of the line mainframe com-
puters, the fact that they can be dedicated to one job or one user
for large periods of time may, under the right circumstances,
make them very effective for large applications as well.

fiat plate laminar boundary layer thickness on the square

root of Reynolds number. Traditionally, many of these

fluid mechanics features are presented in the classroom in

the form of theory and experiment, which are very valu-
able indeed. The intent of the present paper is not to advo-

cate changing these established approaches, but rather to
enhance them with a third alternative---42FD simulations.

Each area, experiment, theory, and CFD, adds something
a little different to the overall understanding of fluid

mechanics. Thus, when all three are used together a com-

bined synergistic effect is created. One aspect that the

element of CFD brings to the overall understanding is

parametric flexibility. What happens when compressibil-
ity is added to the problem or the CLmax point on a C L

versus a curve is reached? A CFD result can help answer

these questions; it helps add to the explanation of a dis-

crepancy between theory and experiment in complex non-

linear flow regimes.

Computational simulations provide the potential to

accommodate a broad range of applications with a broad

range of parametric values. Applications software has

been demonstrated today that spans the complete spec-

trum of flow situations including traditional incompress-

ible, compressible subsonic, transonic, and supersonic

flows about a variety of aircraft components and reason-
ably complete configurations; rarefied atmospheric entry

flows (refs. 32--41); chemically reacting non-ideal-gas

flows (refs. 42-45); flows involving combustion

(refs. 46-49); flows over a wide range of Mach numbers

and Reynolds numbers; and a large variety of internal
flows (refs. 50--55). Providing hands-on experience with

capabilities in a large variety of the above areas through

experimental means would be prohibitively expensive for
the educational environment even for the simplest of con-

figurations or problems. Although computational results

for some of these applications are expensive now, the

future for cost effective computations in many of the

above areas, especially for simplified geometry applica-

tions, is only a matter of time.

Design (Learning by Trial and Error)

The second major category of this section is actually a

specialized subset of the previous section on parametric

variation. In this case, the parameter being varied is the

geometric shape. This type of problem is extremely

important in aerodynamics and fluid dynamics, and thus,
is given special treatment.

The key aspect of this area is to produce a desired effect

or design, e.g., a specific cruise L/D for an airfoil or to

maximize an airfoil's cruise L/D, by a parametric varia-

tion of the airfoil geometry. Examples of suitable param-
eters for this type of exercise include airfoil camber,



thickness distribution, angle of attack, leading-edge

radius, trailing-edge angle, etc. The addition of constraints

such as minimum wing volume, maximum wing root

bending moment, and maximum adverse pressure gradient

can be used to emphasize additional points of importance.

Demonstrating the effects of some or all of these parame-
ters and constraints on airfoil (or wing) L/D performance

by using a CFD computer program can be informative and
motivational. Students can be further motivated by having

design competitions, i.e., who can come up with the high-
est cruise L/D for an airfoil subject to a specific set of

constraints. Additional sophistication such as multiple

design points, laminar flow control, or high-lift devices

can dramatically enhance the teaching aid and extend the

range of application. A design application, as described

above, takes advantage of the ability of computational

simulation to rapidly change geometric shape--a charac-
teristic that would be difficult, if not impossible, to

implement in an exclusively experimental approach.

Visualization

The third and final area suitable for impact by a CFD

technique in the educational environment is that of visual-

ization. Many fluid flow phenomena can be accurately

simulated using CFD, but not in a short amount of com-

puter time or wall clock time. Examples of such flows
include the direct numerical simulation of the transitional

flow over a flat plate or the simulation of flow about a

complete aerospace vehicle such as those simulations pre-

sented at the beginning of this paper. The ability to per-
form such simulations in the educational environment will

not be possible for many years to come.

However, the results of such simulations can be utilized in

the classroom or student laboratory environment by using

"canned" simulations, i.e., solution files that have been

previously computed and saved on disk or some sort of
CDROM device with a large storage capacity. Both com-

putational and experimental results can be saved and

recalled using this approach. These viewing sessions can
be canned themselves, much like a movie film, or they

can be interactive in nature with the student controlling

the features to be analyzed. The latter approach would

probably be the more stimulating and appealing. The

results would be analyzed for pertinent details using the

interactive graphical workstation environment. Direct

comparisons between experiment and computation could
be made. Most interactive sessions of this type would

have to be for three-dimensional steady flows or two-

dimensional unsteady flows, at least at first. Three-

dimensional unsteady flows would require too much stor-

age space, and the interactive process would be too slow

to achieve the proper characteristics within reasonable
costs. With further improvements in the highly competi-

tive graphical workstation market, additional improve-
ments in hardware and system software may make even

the largest simulations amenable to interactive analysis in
the classroom environment.

Concluding Remarks

A brief review of CFD technology across a broad spec-

trum of capabilities, ranging from single-geometry full-

potential simulations to complete aircraft Navier-Stokes
simulations has been presented. The field of computa-

tional simulations is expected to continue rapid growth,

with multidisciplinary applications significantly gaining

popularity in the next decade. This trend will be especially
true in the commercial airplane design environment.

This presentation has been made in the context of having

an impact in the educational environment. Several areas

are seen to have potential in this regard: (1) parametric

analysis, (2) design (learning by trial and error), and

(3) visualization. Overall the use of computer simulations

and the interaction that computers allow is seen to be an

important mechanism to enhance communication, moti-
vation, and, ultimately, understanding in the educational

environment.
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